31,335 research outputs found

    Japlish - English Made In Japan

    Get PDF
    Foreign residence of Japan frequently chuckle over their discoveries of new forms of Japlish or Janglish, i.e., awkward or ludicrous use of English by Japanese. Other than the ludicrous, there is much of interest to readers of Word Ways; I offer a selection below. A more extensive discussion of the subject can be found in Don C. Bailey\u27s glossary of Japanese neologisms (see References). Although it is a decade out of date and probably out of print, it should be available at universities offering instruction in the Japanese language

    Optical spectroscopy of IRAS sources with infrared emission bands. 1: IRAS 21282+5050 and the diffuse interstellar bands

    Get PDF
    Spectroscopy of the starlike optical counterpart to IRAS 21282+5050, a source with the hydrocarbon infrared emission band spectrum, shows an 07(f)-(WC11) planetary nebula nucleus suffering an extinction of 5.7 mag. Emission line widths in the WC spectrum are only approx. 100 km/s, indicating a very slow stellar wind. Optical diffuse interstellar bands (DIBs) are prominent. Five DIBs are strongly enhanced, namely lamda lamda 5797, 6196, 6203, 6283, and 6613. The presence of circumstellar hydrocarbon molecules may explain both the infrared emission bands and the enhanced DIBs

    Bikesharing and Bicycle Safety

    Get PDF
    The growth of bikesharing in the United States has had a transformative impact on urban transportation. Major cities have established large bikesharing systems, including Boston, Chicago, Denver, Minneapolis-Saint Paul, New York City, Salt Lake City, the San Francisco Bay Area, Seattle, Washington DC, and others. These systems began operating as early as 2010, and no fatalities have occurred within the US as of this writing. However, three have happened in North America—two in Canada and one in Mexico. Bikesharing has some qualities that appear inherently unsafe for bicyclists. Most prominently, helmet usage is documented to be quite low in most regions. Bikesharing is also used by irregular bicyclists who are less familiar with the local terrain. In this study, researchers take a closer look at bikesharing safety from qualitative and quantitative perspectives. Through a series of four focus groups, they discussed bikesharing usage and safety with bikesharing members and nonmembers in the Bay Area. They further engaged experts nationwide from a variety of fields to evaluate their opinions and perspectives on bikesharing and safety. Finally, researchers conducted an analysis of bicycle and bikesharing activity data, as well as bicycle and bikesharing collisions to evaluate injury rates associated with bikesharing when compared with benchmarks of personal bicycling. The data analysis found that collision and injury rates for bikesharing are lower than previously computed rates for personal bicycling. Experts and focus group participants independently pointed to bikesharing rider behavior and bikesharing bicycle design as possible factors. In particular, bikesharing bicycles are generally designed in ways that promote stability and limited speeds, which mitigate the conditions that contribute to collisions. Data analysis also explored whether there was evidence of a “safety in numbers benefit” that resulted from bikesharing activity. However, no significant impact from bikesharing activity on broader bicycle collisions could be found within the regions in which they operate. Discussion and recommendations are presented in the conclusion

    Keck Observations of the Hidden Quasar IRAS P09104+4109

    Get PDF
    We present imaging and spectro- polarimetric observations of the ultraluminous infrared galaxy IRAS P09104+4109 using the Keck 10-m Telescope. We detect the clear presence of broad Hb, Hg, and MgII 2800 emission lines in the polarized flux spectra of the nucleus and of an extranuclear emission region ~ 4" away, confirming the presence of a hidden central quasar. The polarization of the broad Mg II emission line is high (~ 29%), consistent with the remarkably high polarization (~ 30%-40%) observed in the extended continuum emission. The narrow emission lines are polarized in a stratified fashion, with the high ionization lines being polarized 0.7%-1.7% and [O II] essentially unpolarized. The line polarizations are positively correlated with critical density, ionization potential, and velocity width of the emission lines. This indicates that the NLR may be partially shadowed by the putative torus, with the higher ionization lines originating closer to the nucleus. One notable characteristic of the extranuclear knot is that all species of Fe are markedly absent in its spectrum, while they appear prominently in the nucleus. Our favored interpretation is that there is a large amount of dust in the extranuclear regions, allowing gaseous refractory metals to deposit. The extended emission regions are most likely material shredded from nearby cluster members and not gas condensed from the cooling flow or expelled from the obscured quasar. Our data provide strong evidence for matter-bounded clouds in addition to ionization-bounded clouds in the NLR. Ionization by pure velocity shocks can be ruled out. Shocks with photoionizing precursors may be present, but are probably not a dominant contributor to the energy input.Comment: 32 pages, including 9 figs and 2 tables, to be published in the Astronomical Journa

    Universal Set of Gates for Microwave Dressed-State Quantum Computing

    Full text link
    We propose a set of techniques that enable universal quantum computing to be carried out using dressed states. This applies in particular to the effort of realising quantum computation in trapped ions using long-wavelength radiation, where coupling enhancement is achieved by means of static magnetic-field gradient. We show how the presence of dressing fields enables the construction of robust single and multi-qubit gates despite the unavoidable presence of magnetic noise, an approach that can be generalised to provide shielding in any analogous quantum system that relies on the coupling of electronic degrees of freedom via bosonic modes

    Silent boundary methods for transient wave analysis

    Get PDF
    This thesis sets forth a dynamic model, designed to absorb infinitely radiating waves in a finite, computational grid. The analysis is primarily directed toward the problem of sail-structure interaction, where energy propagates from a region near a structure, outward toward the boundaries. The proposed method, called the extended-paraxial boundary, is derived from one-directional, wave theories that have been propounded by other authors. In this thesis, the theory is presented from a more general viewpoint and is studied for its stability properties. This work suggests some modifications to the method as it was first presented. Innovations are also put forward in the boundary's implementation for finite element calculations. These alterations render the boundary an effective wave absorber. The extended-paraxial boundary is then compared, both analytically and numerically, with two other transmitting (or silent) boundaries currently available -- the standard-viscous and unified-viscous methods. The analytical results indicate that the extended-paraxial boundary enjoys a distinct advantage in canceling wave reflections; actual numerical tests revealed a small superiority over the viscous approaches. Various issues are also discussed as they relate to the silent boundaries. These include Rayleigh waves, spherically symmetric and axially symmetric waves, nonlinear waves, anisotropic media, and numerical stability
    • 

    corecore